Antibody Network Partners With Celgene for Cancer Therapies

First Industry Partnership for Recombinant Antibody Network Will Enable Development of Potential Novel Therapeutics

By Nicholas Weiler

A new collaboration between Celgene Corp. and the Recombinant Antibody Network (RAN), a consortium comprising research groups from UC San Francisco (UCSF), the University of Chicago and the University of Toronto, will support the development of next-generation, antibody-based cancer therapies.

In this first industry partnership for the RAN, Celgene agreed to pay $25 million for the option to enter into future license agreements to develop and commercialize promising therapeutic antibodies to cancer-related targets.

“The RAN consortium has developed an automated, antibody engineering pipeline that enables high-throughput generation and validation of high-performance recombinant antibodies, at an unprecedented scale,” said James Wells, PhD, one of the founding members of the RAN and a professor of pharmaceutical chemistry in the UCSF School of Pharmacy. “This is a unique opportunity to partner with a top biopharmaceutical company to exploit these capabilities on extracellular targets in the discovery and development of new therapies for treating cancer.”

Over the past decade, antibodies have emerged as the major breakthrough in targeted cancer therapy and are now the fastest growing class of therapeutic molecules. Unfortunately, antibody development remains an imprecise science, conducted on a case-by-case basis.

To address the unmet need for an efficient pipeline for renewable antibody discovery, Wells co-founded the RAN with two other veterans from the former Protein Engineering Department at Genentech Inc. Sachdev Sidhu, PhD, now a professor of molecular genetics at the University of Toronto, and Anthony Kossiakoff, PhD, a professor of biochemistry and molecular biology at the University of Chicago, have teamed with Wells to make automated, large-scale antibody production a reality. The RAN generates recombinant antibodies from cloned synthetic genes that are selected for high performance.

“We created the RAN to address a large, unmet need in both research tools and therapeutic antibody development,” said Dr. Kossiakoff, from UChicago. “The RAN will continue to solve the problems that are inherent in traditional antibody approaches, and help to expand treatments for a variety of diseases, including cancer.”

During the past decade, the researchers have developed new methods to rapidly and reliably produce large libraries of recombinant antibodies, which are tailored, synthetic antibodies created in vitro that consistently show high performance. Using funding from the National Institutes of Health (NIH), the RAN has completed an ambitious project that has provided thousands of high-quality antibodies targeting hundreds of human transcription factors – the signaling molecules that cells use to control when and how their genes produce proteins – which previously have been particularly challenging to target with antibodies. The robotic RAN system enables researchers to select these antibodies efficiently at a broad scale to begin to approach the level of the proteome, the full system of proteins found in a human or organism.

“We look to this collaboration with RAN as a key element of our commitment to discovery and development of innovative and impactful bio-therapeutics,” said Thomas Daniel, MD, president of Celgene Research and Early Development. “Coupled with other key collaborations in the biologics space, we expect RAN to deliver great value identifying and validating important antibody targets in our areas of current therapeutic focus and beyond.”

The collaboration with Celgene enables RAN to use its systematic approach to signaling proteins on the cell’s surface that drive cancer and immunological disease to develop specific licensing opportunities. The RAN also will leverage collaborations with academic groups to engineer antibodies for basic biological research and for developing novel treatments for cancer and other devastating diseases.

“Through this partnership, we are taking a giant step forward in the ultimate goal of the RAN: the systematic targeting of the “extra-cellularome,” the cell-surface proteins that control cancer and other diseases,” said Sidhu, who leads the University of Toronto’s Centre for the Commercialization of Antibodies and Biologics (CCAB). “In the future, we envision that we will be able to precisely target cancer cells at the molecular level, which will provide better therapies for patients.”

About UC San Francisco

UCSF is the nation’s leading university exclusively focused on health. It is dedicated to transforming health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with world-renowned programs in the biological sciences; a preeminent biomedical research enterprise; and two top-tier hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital. Please visit: www.ucsf.edu/news.

The UCSF Office of Innovation, Technology and Alliances led the negotiation of the agreement with Celgene and will manage licensing activity resulting from the collaboration.  

About the University of Chicago

As one of the world's premier research universities, the University of Chicago empowers students and scholars through its commitment to free and open inquiry. Across numerous departments and disciplines, as well as more than 140 institutes and centers, the UChicago community advances ideas and innovations that enrich human life. UChicago’s faculty are some of the top in the world. The University of Chicago has 89 Nobel Prize winners, including 6 current faculty, and receives more than $450 million in sponsored research awards each year. Please visit: https://www.uchicago.edu/

UChicagoTech, the University of Chicago’s Center for Technology Development & Ventures, leads licensing of RAN antibodies generated using NIH funding. 

About the University of Toronto

With three campuses, nine affiliated teaching hospitals and $1.3 billion a year in external research funding, the University of Toronto is a research and innovation powerhouse with a growing entrepreneurship ecosystem. The University has assembled one of the strongest research and teaching faculties in North America, offering students an intellectual environment unmatched in breadth and depth on any other Canadian campus. U of T faculty co-author more research articles than their colleagues at any North American university other than Harvard. The University of Toronto consistently tops the country in international rankings, and ranks alongside the top five U.S. universities whose discoveries are most often cited by other researchers around the world. Please visit: https://www.utoronto.ca

The CCAB, in partnership with the Innovations and Partnership Office (IPO) at the University of Toronto, is responsible for the negotiation and licensing of biologics from the University of Toronto and represents U of T in its commercial transactions with the RAN.

About the Recombinant Antibody Network

The Recombinant Antibody Network (RAN) is a consortium of highly integrated technology centers at UCSF, the University of Chicago, and the University of Toronto, unified under a common goal to generate reliable high quality recombinant antibody (rAb) reagents at a proteome wide scale for biology and biomedicine. Please visit: recombinant-antibodies.org.

About Celgene

Celgene Corporation, headquartered in Summit, New Jersey, is an integrated global biopharmaceutical company engaged primarily in the discovery, development and commercialization of innovative therapies for the treatment of cancer and inflammatory diseases through gene and protein regulation. For more information, please visit www.celgene.com.

University of Chicago:
Rhianna Wisniewski
[email protected]

University of Toronto:
Michael Kennedy
[email protected]